
Representation of Radiation  
and Stratospheric Ozone/H2O 

Physics in FV3GFS 

Most of the radiation slides are prepared by Dr. Yu-Tai Hou of EMC 



Modeling of Atmospheric Radiative Processes 

-  Radiative processes in the Earth System are very complex 

-  Energy input to this system is through solar radiation at the top of the 
atmosphere 

-  Energy loss from the system is primarily via IR cooling to space at the top of the 
atmosphere. 

-  Fortunately for life,  the balance between this incoming and outgoing radiation 
puts Earth System in the “Goldielocks” zone. 

-  However, such equilibrium is achieved through complex  radiative transfer in 
the atmosphere and the resulting heat and energy transfer in the Earth System 

-  Accurate modeling of atmospheric radiative processes is very important for all 
Earth System Models, including NWP and Climate models, but can be 
computationally intensive. 
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Atmospheric Radiative Energy Spectral 
Distributions 
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Atmospheric Absorptions 
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(wattsupwiththat.com) 

(climateandstuff.blogspot.com) 



Atmospheric Scatterings 

- Relative particle sizes to the wavelength (Rayleigh or Mie scatterings) 
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- Multi-scatterings complicate the calculation 
General expression of the 
phase function (Legendre 
expansion) 



Radiative Transfer in the Earth-Atmosphere 
System 
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Simplified radiative transfer equations: 
  - monochromatic, 1-D, plane-parallel, 
    local-thermodynamic-equilibrium,  
    azimuthally independent,… 

The integral-differential equation needs further simplifications for practical 
NWP applications: 
  - non-scattering (LW), non-emission (SW), how about transition region 
  - parameterized band models validated by LBL models 
  - pre-computed transmission tables, k-distribution, … 
  - discrete-ordinate, single, two or multi-stream method, … 

(wikipedia.org) 



History of  Radiation Parameterization 
Development at NCEP 
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1990 2000 2010 

V1 
  NCEP/GFDL-LW 
  NCEP/GFDL-SW 

V2  
NCEP/GFDL-LW 
NCEP/CHOU-SW 

V3  
NCEP/RRTM-LW 
NCEP/CHOU-SW 

V4 
 NCEP/RRTM-LW 
 NCEP/RRTM-SW 

V5  
 NCEP/RRTM_McICA-LW 
 NCEP/RRTM_McICA-SW 

MRF 
ETA 

MRF/ 
GFS 
 
CFSv1 

ETA/ 
NAM 

GFS GFS 
CFSR 

CFSv2 

GFS 
NAM * 
NMMB* 
 

1985 1995 2005 2015 
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NCEP Unified Radiation Module Structures 

Features: 
 Standardized component modules, General plug-compatible, Simple to use, Easy 
to upgrade, Efficient, and Flexible for future expansion 
 
1. Driver module        - prepares astronomy parameters, atmospheric profiles    
                                            (aerosols, gases, clouds), and surface conditions 

2. Astronomy module     - obtains astronomic parameters, local solar zenith angles. 

3. Aerosol module           - establishes aerosol profiles and optical properties 

4. Gas module                  - sets up absorbing gas profiles (O3, CO2, rare gases, …) 

5. Cloud module              - prepares cloud profiles (cloud frac, condensate path, eff radius,…) 

6. Surface module           - sets up surface albedo and emissivity 

7. SW radiation module - computes SW fluxes and heating rates (contains three separate 

                                             parts:  parameters, data tables, and main program) 

8. LW radiation module - computes LW fluxes and heating rates (contains three separate 

                                             parts: parameters, data tables, and main program) 
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Driver Module 

init / update 
main driver 

Astronomy Module 

init / update 

astronomy params 

Gases Module 

init / update 
O3 

CO2 

Cloud Module 

Init / update 

prognostic cld-1 

prognostic cld-2 

Aerosol Module 

init / update 

clim aerosols 

Derived Type : 
    aerosol_type 

Surface Module 

initialization 

SW albedo 

LW emissivity 
Derived Type : 
    sfcalb_type 

SW Param Module 

SW Data Table Module 

SW Main Module 
initialization 
sw radiation  

Outputs : 
    total sky heating rates 
    surface fluxes (up/down) 
    toa atms fluxes (up/down) 
Optional outputs: 
    clear sky heating rates 
    spectral band heating 
rates     
    fluxes profiles (up/down) 
    surface flux components 

LW Param Module 

LW Data Table Module 

LW Main Module 
initialization 
lw radiation  

Outputs : 
    total sky heating rates 
    surface fluxes (up/down) 
    toa atms fluxes (up/down) 
Optional outputs: 
    clear sky heating rates 
    spectral band heating 
rates     
    fluxes profiles (up/down)     

rare gases 

GOCART aerosols 
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Schematic Structure Diagram 

mean coszen 
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Radiation_Astronomy Module 
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(wikimedia.org) 

(intmath.com) 



Radiation_Astronomy Module 

Model selections for Solar constant value :   
  (namelist control parameter – ISOL   RADv5 features in blue) 
   ISOL=0: prescribed value = 1366 w/m2  (old) 
   ISOL=10:prescribed value = 1361 w/m2 (new) 
   ISOL=1: NOAA old yearly solar constant table with 11-year cycle  
                 (range:1944-2006) 
   ISOL=2: NOAA new yearly solar constant table with 11-year cycle 
                 (range:1850-2019) 
   ISOL=3: CMIP5 yearly solar constant table with 11-year cycle  
                 (range:1610-2008) 
   ISOL=4: CMIP5 monthly solar constant table with 11-year cycle 
                 (range1882-2008) 
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Radiation_aerosols Module 
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Aerosol distribution: (namelist control parameter – IAER; IAER_MDL) 
  IAER_MDL=0: OPAC-climatology tropospheric model (monthly mean,15° 
                                         horizontal resolution) 
  IAER_MDL=1: GOCART-climatology tropospheric aerosol model 
  IAER_MDL=2: GOCART-climatology prognostic aerosol model 
Stratosphere: historical recorded volcanic forcing in four zonal mean bands  
                       (1850-2000) 
 IAER = abc of 3-digit integer flags: a-volcanic, b-LW, c-SW 

      a=0: include background stratospheric volcanic aerosol effect  (if both b & c /=0) 
      a=1: include recorded stratospheric volcanic aerosol effect 
      b=0: no LW tropospheric aerosol effect 
      b=1: include LW tropospheric aerosol effect 
      c=0: no SW tropospheric aerosol effect 
      c=1: include SW tropospheric aerosol effect 



Radiation_Gases Module 
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WMO Annual Greenhouse Gas Bulletins (2005) 



Radiation_Gases Module 
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CO2 Distribution : (namelist control parameter - ICO2)  
  ICO2 = 0 : use prescribed global annual mean value (currently=380 ppmv) 
  ICO2 = 1 : use observed global annual mean value 
  ICO2 = 2 : use observed monthly 2-d data table in 15° horizontal resolution 
 
O3 Distribution : (namelist control parameter – NTOZ)  
  NTOZ = 0 : use seasonal and zonal averaged climatological  ozone   
  NTOZ > 0 : use 3-D prognostic ozone 
 
Trace Gases : (currently using the global mean climatology in unit of ppmv) 
  CH4   - 1.50 x 10-6  N2O    -  0.31 x 10-6  O2      -  0.209 
  CO    - 1.50 x 10-8  CF11   - 3.52 x 10-10  CF12  -  6.36 x 10-10 
  CF22 - 1.50 x 10-10  CF113 -  0.82 x 10-10  CCL4 -  1.40 x 10-10 

 



Radiation_Clouds Module 
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Cloud prediction model: (namelist control parameter – NTCW,  IMP_PHYSICS)  
  NTCW = 0 :  legacy diagnostic cloud scheme based on RH-table lookup table 
  NTCW > 0 :  prognostic cloud condensate 
  IMP_PHYSICS = 98/99 : Zhao-Carr-Sundqvist MP – Xu-Randall diagnostic cloud fraction 
  IMP_PHYSICS = 11 : GFDL MP – unified diagnostic cloud fraction  provided by GFDL MP 

Cloud overlapping method: (namelist control parameter – IOVR_LW, IOVR_SW) 
   IOVR = 0 : randomly overlapping vertical cloud layers 
   IOVR = 1 : maximum-random overlapping vertical cloud layers 

Sub-grid cloud approximation: (namelist control parameter – ISUBC_LW, ISUBC_SW) 
   ISUBC = 0 : grid averaged quantities, without sub-grid cloud approximation 
   ISUBC = 1 : with McICA sub-grid approximation (use prescribed permutation seeds) 
   ISUBC = 2 : with McICA sub-grid approximation (use random permutation seeds) 
Other relevant logical namelist control flags: (covered in other physics topics) 
   crick_proof;  ccnorm;  norad_precip; etc. 



Difficulty in presenting clouds for radiation 
computations: 

l  Clouds highly inhomogeneous both space and time 

l   Complexity of  cloud condensates (gas/liquid/ice/snow/rain 
      …) produce a wide range of radiative spectral responses. 

l  Even at very high resolution, it is hardly possible to capture 
the details of the complexity and randomness of cloud structure 
and distribution. 
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Resolving sub-grid structures  

l  Nested 2-D cloud resolving model (CRM) – O(N) very 
expansive, (N: number of sub-grid profiles, full RT 
computation for each sub-grid profile) 

l  Independent column approximation (ICA) – O(N) very 
expensive, (N: number of sub-grids, full RT computation for 
each sub-grid) 

l  Monte-Carlo independent column approximation 
(McICA) – O(~1)  considerably less expensive (partial RT 
for each sub-grid) 
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Examples of ICA-distribution of vertical randomly 
overlapped thin layered clouds: 
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Examples of ICA-distribution of vertical max- 
randomly overlapped thick layered clouds: 
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McICA sub-grid cloud approximation 
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General expression of 1-D radiation flux calculation: 
where Fk are spectral corresponding fluxes, and the 
total number, Κ, depends on different RT schemes 

Independent column approximation (ICA): 
where N  is the number of total sub-columns in 
each model grid 

That leads to a double summation: 

that is too expensive for most applications! 

 Monte-Carlo independent column approximation (McICA): 
In a correlated-k distribution (CKD) approach, if 
the number of quadrature points (g-points) are 
sufficient large and evenly treated, then one may 
apply the McICA to reduce computation time. 

≈ 

Here k  is the number of randomly generated sub-columns 



Advantages of McICA 

l  One efficient way to mimic the random nature of cloud distributions.  
May also be useful for ensemble applications. 

l  A complete separation of optical characteristics from RT solver and has 
been shown to be unbiased against ICA (Barker et al. 2002, Barker and 
Raisanen, 2005) 

l  In addition of cloudiness, the same concept can be used to treat cloud 
condensate as well. 

l  Currently implemented in GFS with simple cloud vertical overlapping 
assumptions (random or maximum-random), more elaborate scheme 
(e.g. de-correlation length) is under development. 

l  Shows significant impact on climate-scale,  moderate impact on medium 
to short-range forecast (infrequent interactions) 
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Radiation_surface Module 
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SW surface albedo: (namelist control parameter - IALB) 
   IALB=0: surface vegetation type based climatology scheme (monthly data 
                 in 1° horizontal resolution) 
   IALB=1: MODIS retrievals based monthly mean climatology 

LW surface emissivity: (namelist control parameter - IEMS) 
   IEMS=0: black-body emissivity (=1.0) 
   IEMS=1: surface type based climatology in 1° horizontal resolution 

SW: 

LW: 



LW Radiation parameter Modules - 1 
LW radiation contains the following modules: 
  radlw_parameters : define spectral ranges, type parameters, etc. 
  radlw_cntr_para    : define pre-compilation control parameters  

 (in radiation v5, control parameters in this module are relocated to a general 
accessible module, “physpara”)  

  
Pre-Compilation control parameter settings: 
  ilwrate - define the unit used for output of LW heating rates 
      =1: LW heating rate output in k/day;   =2: output in k/second 
  irgaslw - define rare gases (ch4,n2o,o2…) effect in LW computation 
      =0: no rare gases effect  in LW;        =1: include rare gases effects 
  icfclw   - define halocarbon (cfc) gases effect in LW computation 
      =0: no cfc gases effect  in LW;          =1: include cfc effects 
  ilwrgas – in module physpara, combining two rare gases flags 
      =0: no rare gases effect  in LW;        =1: include all rare gases effects 
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Pre-Compilation control parameter settings (continue): 
  iaerlw - define spectral property of aerosol used in LW computation 
      =1: optical properties are spectral dependent;   =2: 1 broad band method 
  lalw1bd - logical flag in module physpara, 1 or multi bands for aerosol prop. 
      =true: use one broad-band approach;    = false: multi-band approach 
  iflagliq - input method for liquid water clouds 
      =0: input cloud optical depth, ignor “iflagice” setting 
      =1: input cloud liq and ice paths (ccm2 method) ignore “iflagice” setting 
      =2: input cloud liq path & eff radius (ccm3 method) for water cloud 
      =3: input cloud liq path & eff radius (Hu&Stamnes 1993) for water cloud 
  ilwcliq  - in module physpara for liquid water clouds 
      =0: input cloud optical depth, ignore “ilwcice” setting 
      =1: input cloud liq path & eff radius (Hu&Stamnes 1993) for water cloud 
  iflagice - input method for ice clouds 
      =0: input cloud ice path & eff radius (ccm3 method) for ice cloud 
      =1: input cloud ice path & eff radius (Ebert & Curry 1997) for ice cloud 
      =2: input cloud ice path & eff radius (Streamer 1996) for ice cloud 
  ilwcice  - in module physpara for ice clouds 
      =0 - 2 are the same as the operational iflagice settings 
       =3: input cloud ice path & eff radius (Fu 1998) for ice cloud 

LW Radiation parameter Modules - 2 



SW Radiation parameter Modules - 1 

SW radiation contains the following modules: 
  radsw_parameters : define spectral ranges, type parameters, etc. 
  radsw_cntr_para   : define pre-compilation control parameters  

 (in radiation v5, control parameters in this module are relocated to a general 
accessible module, “physpara”)  

  
Pre-Compilation control parameter settings: 
  iswrate - define the unit used for output of SW heating rates 
      =1: SW heating rate output in k/day;   =2: output in k/second 
  irgassw - define rare gases (ch4,n2o,o2…) effect in SW computation 
      =0: no rare gases effect  in SW;        =1: include rare gases effects 
  iswrgas - in module physpara  
      =0: no rare gases effect  in SW;        =1: include rare gases effects 
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Pre-Compilation control parameter settings (continue): 
  iflagliq - input method for liquid water clouds 
      =0: input cloud optical depth, ignore “iflagice” setting 
      =1: input cloud liq path & eff radius (Hu&Stamnes 1993) for water cloud 
  iswcliq  - in module physpara for liquid water clouds 
      =0: input cloud optical depth, ignore “iswcice” setting 
      =1: input cloud liq path & eff radius (Hu&Stamnes 1993) for water cloud 
  iflagice - input method for ice clouds 
      =0-2: not used 
      =3: input cloud ice path & eff radius (Fu 1996) for ice cloud 
  iswcice  - in module physpara for ice clouds 
      =1: input cloud ice path & eff radius (Ebert&Curry 1992) for ice cloud 
      =2: input cloud ice path & eff radius (Streamer 2001) for ice cloud 
      =3: input cloud ice path & eff radius (Fu 1996) for ice cloud 
  imodsw - method used in 2-stream radiative transfer model 
      =1: delta-eddington (Joseph, 1976) 
      =2: pitm method  (Zdunkowski, 1980) 
      =3: discrete ordinates  (Liou, 1973) 
  iswmode - in module physpara, the same definitions as in the operational model 

SW Radiation parameter Modules - 2 



Default setting for major namelist variables: 

     Functionality  GFS        CFS            RADv5 
1.  ISOL                - solar constant                 0           1   2 
2.  ICO2                - CO2 distribution     0           2   2 
3.  IAER               - aerosol effect   011         111                  011 
4.  IAER_MDL    - aerosol model selection  *           *   0 
5.  IALB              - surface albedo     0           0   0 
6.  IEMS              - surface emissivity     1           1   1 
7.  NUM_P3D     - cloud microphysics     4           4   4 
8.  IOVR_SW      - SW cloud overlapping    1           1   1 
9.  IOVR_LW      - LW cloud overlapping  1           1   1 
9.  ISUBC_SW    - SW sub-grid cloud     0*           2   2 
10.  ISUBC_LW    - LW sub-grid cloud     0*           2   2 
11.  ICTM              - initial cond time cntl     0           1   1 
12.  FHSWR         - SW calling interval     1 (hr)           1 (hr)             3600 (sec) 
13.  FHLWR         - LW calling interval     1 (hr)           1 (hr)             3600 (sec) 

 * not available for the current operational GFS 
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Radiative fields from Model outputs (W/m^2): 

At surface total sky:  
  DLWRFsfc   - Downward LW 
  DSWRFsfc   - Downward SW 
  ULWRFsfc   - Upward LW 
  USWRFsfc   - Upward SW 
  NBDSFsfc   - Near IR beam downward 
  NDDSFsfc   - Near IR diffuse downward 
  VBDSFsfc   - UV+Visible beam downward 
  VDDSFsfc   - UV+Visible diffuse downward 
  DUVBsfc     - UV-B downward flux 
At surface clear sky:  
  CSDLFsfc   - Downward LW 
  CSDSFsfc   - Downward SW 
  CSULFsfc   - Upward LW 
  CSUSFsfc   - Upward SW 
  CDUVBsfc - UV-B downward flux  
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At TOA total sky:  
  DSWRFtoa - Downward SW 
  ULWRFtoa - Upward LW 
  USWRFtoa - Upward SW 
 
 
 
 
 
At TOA clear sky:  
  CSULFtoa  - Upward LW 
  CSUSFtoa - Upward SW  




Stratospheric Ozone Physics in FV3GFS 

Ozone  sources and sinks 
(ozphys.f) 

l  Current OPR version based on Naval Research Laboratory’s 
CHEM2D model  - McCormack et al., (2006) 

l  Monthly and zonal mean ozone production rate and ozone destruction 
rate per unit ozone mixing ratio were provided by NRL based on 
CHEM2D model 

l  Original version of these terms were provided by NASA/DAO based on 
NASA 2D Chemistry model 

l  Model can run with both versions (just provide the right input file) 
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Current Ozone Physics in parallel FV3GFS 
 

Based on the development from Climate Program Office sponsored 

multi-organization project: 

Improving the Prognostic Ozone Parameterization in the NCEP GFS and 

CFS for Climate Reanalysis and Operational Forecasts 

Gilbert P. Compo1,2, Hai-Tien Lee3, Sarah Lu4, Shrinivas Moorthi4, John P. 

McCormack5, Craig Long3, Prashant D. Sardeshmukh1,2, Jeffrey S. Whitaker2 

 
1University of Colorado/CIRES  
2NOAA Earth System Research Laboratory/Physical Sciences Division 
3NOAA, National Centers for Environmental Prediction, Climate Prediction Center 
4NOAA, National Centers for Environmental Prediction, Environmental Modeling Center 
5Naval Research Laboratory 
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Ozone Physics in FV3GFS 
 

Naval Research Laboratory CHEM2D Ozone Photochemistry Parameterization  
(CHEM2D-OPP, McCormack et al. (2006))  
 
CHEM2D-OPP is based on gas-phase chemistry circa 2000. 
Same approach as used in ECMWF IFS (Cariolle and Deque 1986).  
Includes ozone depletion from CFCs.  
  
Net ozone photochemical tendency : functional form of Production P minus Loss L 
 
 
Taylor series expansion with respect to a  reference state (denoted by overbar) and linearizing, 
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Ozone Physics in FV3GFS 
 

 
Partial use of CHEM2D-OPP in the current NCEP Global Forecast System (GFS) 
atmosphere model (using only first two terms) 
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Reference tendency (P-L)0 and all partial derivatives are computed from odd oxygen 
(Ox ≡ O3+O) reaction rates in the CHEM2D photochemical transport model.  
 
CHEM2D is a global model extending from the surface to ~120 km that solves 280 
chemical reactions for 100 different species within a transformed Eulerian mean 
framework with fully interactive radiative heating and dynamics.  
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Stratospheric H2O Physics 

H2O  sources and sinks in the stratosphere/mesosphere 
(h2ophys.f) 

 

l  This new scheme is based on “Parameterization of middle atmospheric 
water vapor photochemistry for high-altitude NWP and data assimilation” 
by McCormack et al. (2008), from NRL 

l  Accounts for the altitude, latitude, and seasonal variations in the 
photochemical sources and sinks of water vapor over the pressure region 
from 100–0.001hPa (∼16–90km altitude) 

l  Monthly and zonal mean H2O production and loss rates are provided by 
NRL based on the CHEM2D zonally averaged photochemical-transport 
model of the middle atmosphere 

l  The scheme mirrors that of ozone, with only production and loss terms. 
l  Logical “H2O_phys” in the physics namelist can be used to turn this off. 
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Representation of Radiation and Stratospheric 
Ozone/H2O Physics in FV3GFS 
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The End 
 
 
Thank You  


